

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

### A Double Isotopic Labelling Study of the Infrared Spectra of the Linkage Isomers $[\text{Pd}(\text{bipy})(\text{SCN})_2]$ , $[\text{Pd}(\text{bipy})(\text{NCS})_2]$ and Related Complexes

Carola Engelter<sup>a</sup>; David A. Thornton<sup>a</sup>; Gareth M. Watkins<sup>a</sup>

<sup>a</sup> Department of Inorganic Chemistry, University of Cape Town, Rondebosch, South Africa

**To cite this Article** Engelter, Carola , Thornton, David A. and Watkins, Gareth M.(1989) 'A Double Isotopic Labelling Study of the Infrared Spectra of the Linkage Isomers  $[\text{Pd}(\text{bipy})(\text{SCN})_2]$ ,  $[\text{Pd}(\text{bipy})(\text{NCS})_2]$  and Related Complexes', Spectroscopy Letters, 22: 7, 935 — 944

**To link to this Article: DOI:** 10.1080/00387018908053947

**URL:** <http://dx.doi.org/10.1080/00387018908053947>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**A DOUBLE ISOTOPIC LABELLING STUDY OF THE INFRARED SPECTRA OF  
THE LINKAGE ISOMERS  $[\text{Pd}(\text{bipy})(\text{SCN})_2]$ ,  $[\text{Pd}(\text{bipy})(\text{NCS})_2]$  AND  
RELATED COMPLEXES**

Carola Engelter, David A Thornton\* and Gareth M Watkins

Department of Inorganic Chemistry, University of Cape Town,  
Rondebosch 7700, South Africa.

**ABSTRACT**

The IR spectra of the linkage isomers  $[\text{Pd}(\text{bipy})(\text{SCN})_2]$  and  $[\text{Pd}(\text{bipy})(\text{NCS})_2]$  have been determined in the C≡N stretching region (2200-2000  $\text{cm}^{-1}$ ) and below 500  $\text{cm}^{-1}$ . The band shifts resulting from deuteration of the 2,2'-bipyridine (bipy) ring and  $^{15}\text{NCS}$ -labelling are shown to provide a ready means for distinguishing between the internal ligand modes, the  $\nu\text{Pd}-\text{N}(\text{bipy})$  and  $\nu\text{Pd-SCN}/\nu\text{Pd-NCS}$  vibrations. The assignment technique has been further extended to the complexes  $[\text{Pt}(\text{bipy})(\text{SCN})_2]$  and  $[\text{Pd}(\text{phen})(\text{SCN})_2]$  (phen = 1,10-phenanthroline). Finally, a comparison between the IR spectra of  $[\text{Pd}(\text{bipy})(\text{NCO})_2]$ ,  $[\text{Pd}(\text{bipy})(\text{NCS})_2]$  and  $[\text{Pd}(\text{bipy})(\text{SCN})_2]$  reveals that the frequencies  $\nu\text{M-NCO}$ ,  $\nu\text{M-NCS}$  and  $\nu\text{M-SCN}$  decrease in the sequence NCO > NCS > SCN.

## INTRODUCTION

The IR spectra of metal thiocyanate(M-SCN) and isothiocyanate(M-NCS) complexes have been widely studied,<sup>1-7</sup> much of the attention being given to the question of distinction between the two modes of bonding. Further attention has been given to the difficult problem of distinguishing between the two types of metal-nitrogen stretching modes in the isothiocyanate complexes of heterocyclic nitrogenous bases such as pyridine, 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen).

In this paper we report on the application of <sup>15</sup>N-labelled sodium thiocyanate and fully deuterated bipy-*d*<sub>8</sub> and phen-*d*<sub>8</sub> to these problems. As examples for study by the double isotopic labelling technique, we have selected the linkage isomers [Pd(bipy)(SCN)<sub>2</sub>] and [Pd(bipy)(NCS)<sub>2</sub>]. The *S*-bonded complexes: [Pt(bipy)(SCN)<sub>2</sub>] and [Pd(phen)(SCN)<sub>2</sub>] (for which *N*-bonded isomers have not been reported) are also included in the study which incorporates the  $\nu$ C≡N region (2200 - 2000 cm<sup>-1</sup>) and the far-IR range 500 - 50 cm<sup>-1</sup>.

## EXPERIMENTAL

The complexes [Pd(bipy)(NCS)<sub>2</sub>] and [Pd(bipy)(SCN)<sub>2</sub>] were prepared by reported methods<sup>2,8</sup>. The complex [Pd(phen)(SCN)<sub>2</sub>] was prepared as follows. An ethanolic solution of 1,10-phenanthroline (0.5 mMole) was added to an aqueous solution of K<sub>2</sub>PdCl<sub>4</sub> (0.5 mMole in 5 ml H<sub>2</sub>O). The yellow precipitate which immediately resulted, was treated with an excess of a concentrated aqueous solution of NaSCN. The colour changed to orange-yellow. After 30 minutes, the precipitate was

collected by filtration, washed with water followed by ethanol and dried under reduced pressure over silica gel. The complex  $[\text{Pt}(\text{bipy})(\text{SCN})_2]$  was prepared as follows. An aqueous solution of  $\text{K}_2\text{PtCl}_4$  (0.5 mMole) and KSCN or NaSCN (2 mMole) was heated on a water-bath for 10 minutes. An ethanolic solution of 2,2'-bipyridine (0.5 mMole) was added, followed by dilute HCl to bring the pH to 1.5. The resulting orange-red precipitate was allowed to stand overnight and was collected by filtration. The product was washed with water followed by ethanol and dried under reduced pressure over silica gel.

The labelled complexes were similarly prepared from 2,2'-bipyridine- $d_8$ , 1,10-phenanthroline- $d_8$  and sodium thiocyanate- $^{15}\text{N}$  of >98% isotopic purity supplied by Merck Frosst (Canada) Ltd. The labelled complexes were washed, after filtration, with  $\text{D}_2\text{O}$  followed by EtOD (Aldrich). The S-bonded complexes were stored at reduced temperature ( $\sim 0^\circ\text{C}$ ). Composition and purity of all complexes were determined by microanalysis.

Infrared spectra were determined on nujol mulls between CsI plates ( $2200 - 2000$  and  $600 - 250 \text{ cm}^{-1}$ ) or polyethylene plates ( $500 - 50 \text{ cm}^{-1}$ ) on a Perkin-Elmer 983 spectrophotometer and a Digilab FTS 16B/D interferometer.

## RESULTS AND DISCUSSION

The spectra of the complexes and their  $^{15}\text{NCS}$ - and bipy- $d_8$  (or phen- $d_8$ ) analogues are depicted in Fig. 1 and the frequencies and assignments are reported in Table 1.

### **The internal ligand modes**

The  $\nu\text{C}\equiv\text{N}$  region of the spectrum was useful for distinguishing between the linkage isomeric pair of palladium

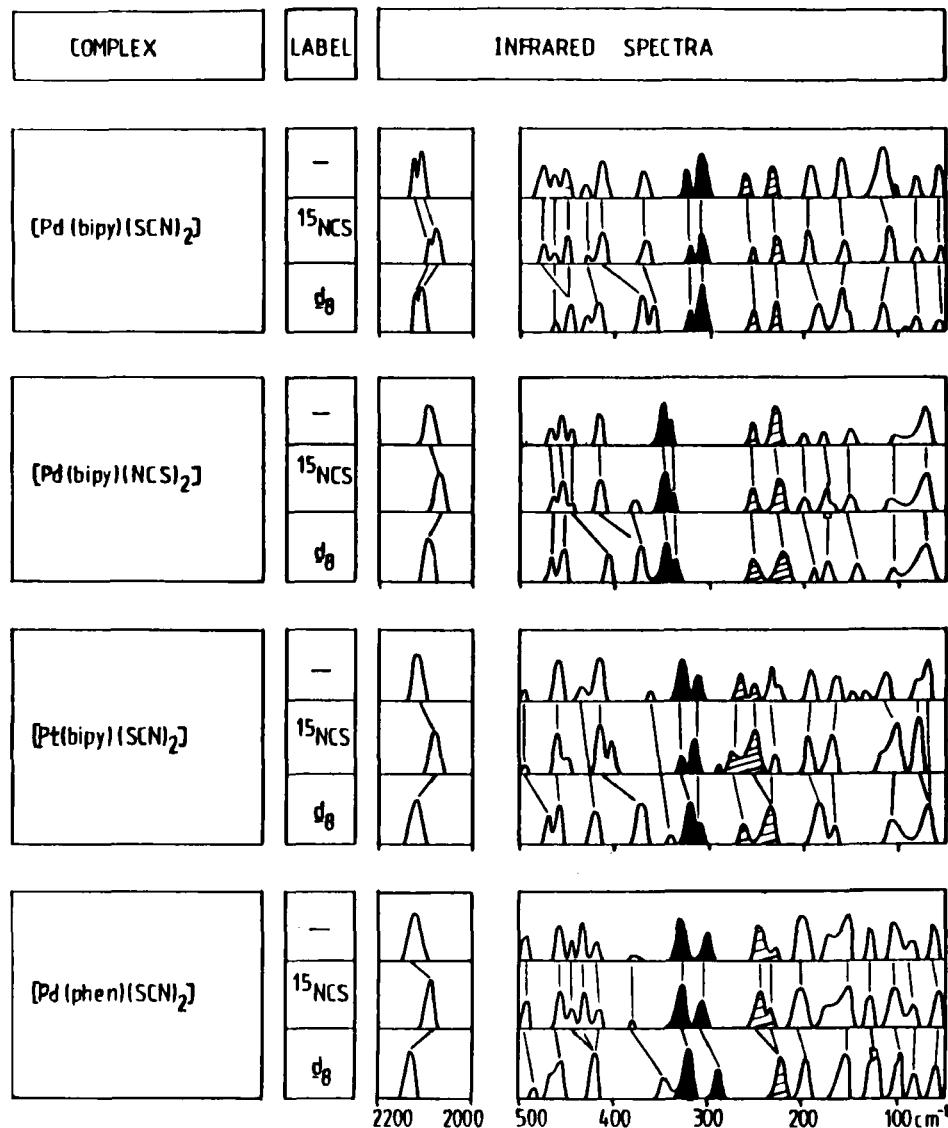



Fig. 1. Infrared spectra of thiocyanate and isothiocyanate complexes. Solid bands:  $\nu\text{M-SCN}$  or  $\nu\text{M-NCS}$ ; shaded bands:  $\nu\text{M-N}$ .



complexes in that the *S*-bonded form exhibited sharp splitting into a doublet at 2120, 2112  $\text{cm}^{-1}$  while the *N*-bonded isomer yielded a single band at 2100  $\text{cm}^{-1}$ . However, the remaining two complexes studied, which both have *S*-bonded thiocyanato ligands, yielded single rather than multiple  $\nu\text{C}\equiv\text{N}$  peaks. Isotopic labelling is not suitable for distinguishing between *N*- and *S*-bonded species in this region because the shifts on  $^{15}\text{NCS}$ -labelling are identical ( $\Delta\nu = 29 \text{ cm}^{-1}$ ) for both isomers. In all four complexes examined, the shifts were between 27 and 29  $\text{cm}^{-1}$  which is comparable with the effect of  $^{15}\text{N}$ -labelling on the  $\nu\text{C}\equiv\text{N}$  band of  $\text{KSCN}$  ( $\Delta\nu = 25 \text{ cm}^{-1}$ )<sup>9</sup> and with that previously observed for the complexes  $[\text{M}(\text{py})_2(\text{NCS})_2]$  ( $\text{M} = \text{Mn, Co, Ni, Cu, Zn}$ )<sup>10</sup>.

The internal ring modes of the heterocycles are readily identified by their high frequency shift of approximately 30  $\text{cm}^{-1}$  on complexation and their generally large low frequency shifts on deuteration. These have an average value of 23  $\text{cm}^{-1}$  over fifteen observed shifts compared with a mean shift of 10  $\text{cm}^{-1}$  in the  $\nu\text{M-N(bipy or phen)}$  modes. The bands occur near 490, 440, 420 and 370  $\text{cm}^{-1}$  and have the assignments indicated in Table 1. They are, as expected, practically insensitive to  $^{15}\text{NCS}$ -labelling.

The only other IR bands within the range 500 - 350  $\text{cm}^{-1}$  are the  $\delta\text{SCN}/\delta\text{NCS}$  modes, generally observed near 450  $\text{cm}^{-1}$ . These have previously been proposed as diagnostic of *S*- or *N*-bonding in that *N*-bonded complexes supposedly yield one band near 475  $\text{cm}^{-1}$  while *S*-bonded compounds yield one or more bands near 420  $\text{cm}^{-1}$ <sup>4</sup>. However, in the absence of isotopic labelling, these bands are difficult to distinguish from the neighbouring ring modes and some erroneous assignments have been made in the past on an empirical basis.<sup>1-7</sup> The bands are identified here by their isotopic shifts which range between 1 and 5  $\text{cm}^{-1}$  on  $^{15}\text{NCS}$ -labelling (mean shift: 3  $\text{cm}^{-1}$ ) and

are generally unaffected by ring deuteration (mean shift : 1  $\text{cm}^{-1}$ ). Two bands are observed for both the *N*- and *S*-bonded linkage isomers and the criterion of position (given above) is not obeyed.

### Metal-ligand modes

In terms of the square planar  $C_{2v}$  symmetry of these molecules, two  $\nu\text{M-SCN}$  (or  $\nu\text{M-NCS}$ ) and two  $\nu\text{M-N(bipy or phen)}$  modes are expected. The double isotopic labelling technique serves to distinguish the two types of  $\nu\text{M-L}$  mode very well, although there is evidence of some vibrational coupling between them. The  $\nu\text{M-SCN}$  (or  $\nu\text{M-NCS}$ ) absorption occurs as a pair of neighbouring bands within the range 330 - 300  $\text{cm}^{-1}$  for  $\nu\text{M-SCN}$  and 350 - 340  $\text{cm}^{-1}$  for  $\nu\text{M-NCS}$ . These ranges are apparently diagnostic of M-S or M-N bonding although the sensitivities of the bands towards  $^{15}\text{NCS-}$  and  $d_8$ -labelling are not very distinctive, especially where vibrational coupling with a ring mode causes the  $\nu\text{Pd-SCN}$  bands in the phenanthroline complex to acquire some *d*-sensitivity.

It is noteworthy that the isomerisation process of the *S*-bonded complex can be directly followed from the infrared spectra. The spectrum of a freshly prepared sample of  $[\text{Pd}(\text{bipy})(\text{SCN})_2]$  shows only two  $\nu\text{Pd-SCN}$  bands (at 322 and 309  $\text{cm}^{-1}$ ) whereas no band is observed in the  $\nu\text{Pd-NCS}$  region at about 350  $\text{cm}^{-1}$ . After storage (for over 12 months at room temperature) the spectra of the same sample displays two strong bands at 349 and 340  $\text{cm}^{-1}$  (assigned to  $\nu\text{Pd-NCS}$ ) whereas the two  $\nu\text{Pd-SCN}$  bands at about 320  $\text{cm}^{-1}$  have decreased considerably in intensity. Complete isomerisation to the pure *N*-bonded species is achieved on heating the sample to 150°C for 45 minutes. The spectrum then shows only the two  $\nu\text{Pd-NCS}$  bands while the two  $\nu\text{Pd-SCN}$  bands have disappeared.

The  $\nu$ M-N(bipy or phen) bands are distinguished as a band pair (three bands for the Pt complex) within the range 280 - 230  $\text{cm}^{-1}$ . The assignment is based on the observed shifts (mean value of  $\Delta\nu$  : 10  $\text{cm}^{-1}$ ) caused by ring-deuteration and the position, which is characteristic of  $\nu$ M-N bands in the complexes of heterocyclic N-bonded ligands in general<sup>10,11</sup>. These bands generally also exhibit some <sup>15</sup>NCS-sensitivity, indicating the existence of vibrational coupling between the two types of metal-ligand stretching modes.

The metal-ligand bending modes occur within the range 200 - 100  $\text{cm}^{-1}$ . We have made some attempt to distinguish between the various bending modes on the basis of the observed isotopic shifts (Table 1) but these assignments remain tentative.

A comparison between the frequencies of  $\nu$ Pd-NCO,  $\nu$ Pd-NCS and  $\nu$ Pd-SCN bands is of interest. In the isocyanate complex  $[\text{Pd}(\text{bipy})(\text{NCO})_2]$ ,  $\nu$ Pd-NCO has been reported at 380  $\text{cm}^{-1}$ <sup>12</sup> while we observe  $\nu$ Pd-NCS in  $[\text{Pd}(\text{bipy})(\text{NCS})_2]$  at 349 and 340  $\text{cm}^{-1}$ . The lower frequency of  $\nu$ Pd-NCS may be attributed to the higher mass of the NCS-ligand. Likewise, we find  $\nu$ Pd-SCN at a lower frequency than  $\nu$ Pd-NCS which may be attributed to the higher mass of the sulphur donor atom. This is, however, contrary to the assignments of Keller et al.<sup>6</sup> for the linkage isomers of the complexes  $[\text{Pd}(\text{bipy})\text{X}_2]$  and  $[\text{Pd}(\text{Ph}_3\text{As})_2\text{X}_2]$  ( $\text{X} = \text{NCS, SCN}$ ) but supports those given by Goodgame and Mallerbi<sup>5</sup> for  $[\text{Pd}(\text{bipy})\text{X}_2]$  ( $\text{X} = \text{NCS, SCN}$ ) and by workers in this laboratory for *trans*- $[\text{Co}(\text{DH})_2(\text{py})\text{X}]$  ( $\text{DH} = \text{dimethylglyoximate anion}$ ;  $\text{X} = \text{NCS, SCN}$ ) in which the assignments were also based on the multiple isotopic labelling technique<sup>13</sup>.

## CONCLUSION

The double isotopic labelling technique (<sup>15</sup>N-labelling of the thiocyanate/isothiocyanate ligand and perdeuteration of

bipy or phen) enables a clear distinction to be made between the metal-thiocyanate/isothiocyanate stretching modes ( $\nu$ M-SCN or  $\nu$ M-NCS) on the one hand and the metal-bipyridine/phenanthroline stretching modes ( $\nu$ M-N(bipy) or  $\nu$ M-N(phen)) on the other, in the far-IR spectra of the complexes. However, for the purposes of distinguishing between the  $\nu$ M-SCN bands of the thiocyanate complexes and the  $\nu$ M-NCS bands of the isothiocyanate complexes, the isotopic labelling technique is rather less distinctive because of vibrational coupling between each of these modes and  $\nu$ M-N(bipy or phen). For distinguishing between two linkage isomers, a combination of the isotopic labelling technique and the more traditional methods for IR distinction based on the nature and position of the  $\nu$ C≡N,  $\nu$ C-S and  $\delta$ SCN bands<sup>1-7</sup> is to be recommended.

#### ACKNOWLEDGEMENT

We thank the Foundation for Research Development of the CSIR and the UCT Research Grants Committee for financial assistance.

#### REFERENCES

1. A. Turco and C Pecile, *Nature*, 1961; 191:66.
2. J L Burmeister and F Basolo, *Inorg. Chem.*, 1964; 13:1587.
3. I Bertini and A Sabatini, *Inorg. Chem.*, 1966; 5: 1025.
4. D M Adams, *Metal-Ligand and Related Vibrations*, Arnold, London, 1973, p. 318.

5. D M L Goodgame and B W Malerbi, *Spectrochim. Acta*, 1968; 24A:1254.
6. R N Keller, N B Johnson and L L Westmoreland, *J. Am. Chem. Soc.*, 1968; 90:2729.
7. A Miezis, *Acta Chem. Scand.*, 1973; 27:3746.
8. J L Burmeister and F Basolo, *Inorg. Syntheses*, 1970; 12:222.
9. R Savoie and M Pezolet, *Can. J. Chem.*, 1967; 45:1677.
10. C Engelter and D A Thornton, *J. Mol. Struct.*, 1977; 42:51.
11. C Engelter and D A Thornton, *Transition Metal Chem.*, in press.
12. A H Norbury, *Chem. Ind. (London)*, 1970; 23:744.
13. P E Rutherford and D A Thornton, *Spectrosc. Lett.*, 1980; 13:427.

Date Received: 04/25/89  
Date Accepted: 05/25/89